Scaling Up Stomatal Conductance from Leaf to Canopy Using a Dual-Leaf Model for Estimating Crop Evapotranspiration
نویسندگان
چکیده
The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET). Canopy stomatal conductance (Gsc), an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1) the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2) leaf area for the sunlit and shaded fractions; and (3) a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98), with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL) agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and partitioning λET.
منابع مشابه
Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration.
Stomatal responses to atmospheric change have been well documented through a range of laboratory- and field-based experiments. Increases in atmospheric concentration of CO(2) ([CO(2)]) have been shown to decrease stomatal conductance (g(s)) for a wide range of species under numerous conditions. Less well understood, however, is the extent to which leaf-level responses translate to changes in ec...
متن کاملOn the Representativeness of Plot Size and Location for Scaling Transpiration from Trees to a Stand
[1] Scaling transpiration from trees to larger areas is a fundamental problem in ecohydrology. For scaling stand transpiration from sap flux sensors we asked if plot representativeness depended on plot size and location, the magnitude of environmental drivers, parameter needs for ecosystem models, and whether the goal was to estimate transpiration per unit ground area (EC), per unit leaf area (...
متن کاملOn the variability of the ecosystem response to elevated 1 atmospheric CO 2 across spatial and temporal scales at the 2 Duke Forest FACE experiment
12 While the significance of elevated atmospheric CO2 concentration on instantaneous leaf13 level processes such as photosynthesis and transpiration is rarely disputed, its integrated 14 effect at ecosystem level and at long-time scales remains a subject of debate. In part, the 15 uncertainty stems from the inherent leaf-to-leaf variability in gas exchange rates. By 16 combining 10 years of lea...
متن کاملNitrogen Controls on Climate Model Evapotranspiration
Most evapotranspiration over land occurs through vegetation. The fraction of net radiation balanced by evapotranspiration depends on stomatal controls. Stomates transpire water for the leaf to assimilate carbon, depending on the canopy carbon demand, and on root uptake, if it is limiting. Canopy carbon demand in turn depends on the balancing between visible photon-driven and enzyme-driven steps...
متن کاملUse of a minimally invasive method of measuring leaf stomatal conductance to examine stomatal responses to water vapor pressure difference under field conditions
Most methods of measuring the diffusive conductance to water vapor of individual plant leaves potentially change the leaf environment by enclosing part of the leaf in order to measure the rate of water vapor exchange and the driving force for that exchange. There have been questions about whether leaf to air water vapor pressure difference varies sufficiently in extensive crop canopies to be a ...
متن کامل